PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orassoc-P3.38

Theorem orassoc-P3.38 322
Description: '' Associativity.
Assertion
Ref Expression
orassoc-P3.38 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem orassoc-P3.38
StepHypRef Expression
1 orassoc-P3.38-L1 320 . 2 (((𝜑𝜓) ∨ 𝜒) → (𝜑 ∨ (𝜓𝜒)))
2 orassoc-P3.38-L2 321 . 2 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ∨ 𝜒))
31, 2rcp-NDBII0 239 1 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  orassoc2a-P4  572  orassoc2b-P4  574
  Copyright terms: Public domain W3C validator