| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > orassoc-P3.38 | |||
| Description: '∨' Associativity. † |
| Ref | Expression |
|---|---|
| orassoc-P3.38 | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orassoc-P3.38-L1 320 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 2 | orassoc-P3.38-L2 321 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) → ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: orassoc2a-P4 572 orassoc2b-P4 574 |
| Copyright terms: Public domain | W3C validator |