PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orassoc2a-P4

Theorem orassoc2a-P4 572
Description: Alternate Form A of orassoc-P3.38 322.
Hypothesis
Ref Expression
orassoc2a-P4.1 (𝛾 → ((𝜑𝜓) ∨ 𝜒))
Assertion
Ref Expression
orassoc2a-P4 (𝛾 → (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem orassoc2a-P4
StepHypRef Expression
1 orassoc2a-P4.1 . 2 (𝛾 → ((𝜑𝜓) ∨ 𝜒))
2 orassoc-P3.38 322 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
31, 2subimr2-P4.RC 543 1 (𝛾 → (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  orassoc2a-P4.RC  573
  Copyright terms: Public domain W3C validator