| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDORE3 | |||
| Description: ∨ Elimination Recipe. † |
| Ref | Expression |
|---|---|
| rcp-NDORE3.1 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝜑) → 𝜒) |
| rcp-NDORE3.2 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝜓) → 𝜒) |
| rcp-NDORE3.3 | ⊢ ((𝛾₁ ∧ 𝛾₂) → (𝜑 ∨ 𝜓)) |
| Ref | Expression |
|---|---|
| rcp-NDORE3 | ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDORE3.1 | . . 3 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝜑) → 𝜒) | |
| 2 | 1 | rcp-NDSEP3 186 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂) ∧ 𝜑) → 𝜒) |
| 3 | rcp-NDORE3.2 | . . 3 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝜓) → 𝜒) | |
| 4 | 3 | rcp-NDSEP3 186 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂) ∧ 𝜓) → 𝜒) |
| 5 | rcp-NDORE3.3 | . 2 ⊢ ((𝛾₁ ∧ 𝛾₂) → (𝜑 ∨ 𝜓)) | |
| 6 | 2, 4, 5 | ndore-P3.12 177 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜒) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-rcp-AND3 161 |
| This theorem is referenced by: orassoc-P3.38-L1 320 orassoc-P3.38-L2 321 suborl-P3.43a-L1 345 orasim-P3.48-L1 359 joinimandinc-P4.8a 397 joinimor-P4.8c 403 dmorgarev-L4.2 453 andoveror-P4.27-L1 459 oroverand-P4.27-L4 463 |
| Copyright terms: Public domain | W3C validator |