PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDORE3

Theorem rcp-NDORE3 236
Description: Elimination Recipe.
Hypotheses
Ref Expression
rcp-NDORE3.1 ((𝛾₁𝛾₂𝜑) → 𝜒)
rcp-NDORE3.2 ((𝛾₁𝛾₂𝜓) → 𝜒)
rcp-NDORE3.3 ((𝛾₁𝛾₂) → (𝜑𝜓))
Assertion
Ref Expression
rcp-NDORE3 ((𝛾₁𝛾₂) → 𝜒)

Proof of Theorem rcp-NDORE3
StepHypRef Expression
1 rcp-NDORE3.1 . . 3 ((𝛾₁𝛾₂𝜑) → 𝜒)
21rcp-NDSEP3 186 . 2 (((𝛾₁𝛾₂) ∧ 𝜑) → 𝜒)
3 rcp-NDORE3.2 . . 3 ((𝛾₁𝛾₂𝜓) → 𝜒)
43rcp-NDSEP3 186 . 2 (((𝛾₁𝛾₂) ∧ 𝜓) → 𝜒)
5 rcp-NDORE3.3 . 2 ((𝛾₁𝛾₂) → (𝜑𝜓))
62, 4, 5ndore-P3.12 177 1 ((𝛾₁𝛾₂) → 𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-rcp-AND3 161
This theorem is referenced by:  orassoc-P3.38-L1  320  orassoc-P3.38-L2  321  suborl-P3.43a-L1  345  orasim-P3.48-L1  359  joinimandinc-P4.8a  397  joinimor-P4.8c  403  dmorgarev-L4.2  453  andoveror-P4.27-L1  459  oroverand-P4.27-L4  463
  Copyright terms: Public domain W3C validator