PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dmorgarev-L4.2

Theorem dmorgarev-L4.2 453
Description: De Morgan's Law A: Reverse Implication Lemma.
Assertion
Ref Expression
dmorgarev-L4.2 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))

Proof of Theorem dmorgarev-L4.2
StepHypRef Expression
1 rcp-NDASM3of3 197 . . . 4 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓) ∧ 𝜑) → 𝜑)
2 rcp-NDASM1of3 195 . . . . 5 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓) ∧ 𝜑) → (¬ 𝜑 ∧ ¬ 𝜓))
32ndander-P3.9 174 . . . 4 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓) ∧ 𝜑) → ¬ 𝜑)
41, 3ndnege-P3.4 169 . . 3 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓) ∧ 𝜑) → ⊥)
5 rcp-NDASM3of3 197 . . . 4 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓) ∧ 𝜓) → 𝜓)
6 rcp-NDASM1of3 195 . . . . 5 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓) ∧ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))
76ndandel-P3.8 173 . . . 4 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓) ∧ 𝜓) → ¬ 𝜓)
85, 7ndnege-P3.4 169 . . 3 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓) ∧ 𝜓) → ⊥)
9 rcp-NDASM2of2 194 . . 3 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓)) → (𝜑𝜓))
104, 8, 9rcp-NDORE3 236 . 2 (((¬ 𝜑 ∧ ¬ 𝜓) ∧ (𝜑𝜓)) → ⊥)
1110rcp-FALSENEGI2 434 1 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144  wff-false 157  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161
This theorem is referenced by:  dmorga-P4.26a  456
  Copyright terms: Public domain W3C validator