PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dmorgbfwd-L4.3

Theorem dmorgbfwd-L4.3 454
Description: De Morgan's Law B: Forward Implication Lemma.
Assertion
Ref Expression
dmorgbfwd-L4.3 (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))

Proof of Theorem dmorgbfwd-L4.3
StepHypRef Expression
1 norer-P4.2b.CL 372 . . . 4 (¬ (¬ 𝜑 ∨ ¬ 𝜓) → ¬ ¬ 𝜑)
21dnege-P3.30 276 . . 3 (¬ (¬ 𝜑 ∨ ¬ 𝜓) → 𝜑)
3 norel-P4.2a.CL 369 . . . 4 (¬ (¬ 𝜑 ∨ ¬ 𝜓) → ¬ ¬ 𝜓)
43dnege-P3.30 276 . . 3 (¬ (¬ 𝜑 ∨ ¬ 𝜓) → 𝜓)
52, 4ndandi-P3.7 172 . 2 (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓))
65trnsp-P3.31b.RC 283 1 (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  dmorgb-P4.26b  457
  Copyright terms: Public domain W3C validator