| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dmorgbfwd-L4.3 | |||
| Description: De Morgan's Law B: Forward Implication Lemma. |
| Ref | Expression |
|---|---|
| dmorgbfwd-L4.3 | ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norer-P4.2b.CL 372 | . . . 4 ⊢ (¬ (¬ 𝜑 ∨ ¬ 𝜓) → ¬ ¬ 𝜑) | |
| 2 | 1 | dnege-P3.30 276 | . . 3 ⊢ (¬ (¬ 𝜑 ∨ ¬ 𝜓) → 𝜑) |
| 3 | norel-P4.2a.CL 369 | . . . 4 ⊢ (¬ (¬ 𝜑 ∨ ¬ 𝜓) → ¬ ¬ 𝜓) | |
| 4 | 3 | dnege-P3.30 276 | . . 3 ⊢ (¬ (¬ 𝜑 ∨ ¬ 𝜓) → 𝜓) |
| 5 | 2, 4 | ndandi-P3.7 172 | . 2 ⊢ (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)) |
| 6 | 5 | trnsp-P3.31b.RC 283 | 1 ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: dmorgb-P4.26b 457 |
| Copyright terms: Public domain | W3C validator |