PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  norer-P4.2b.CL

Theorem norer-P4.2b.CL 372
Description: Closed Form of norer-P4.2b 370.
Assertion
Ref Expression
norer-P4.2b.CL (¬ (𝜑𝜓) → ¬ 𝜑)

Proof of Theorem norer-P4.2b.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (¬ (𝜑𝜓) → ¬ (𝜑𝜓))
21norer-P4.2b 370 1 (¬ (𝜑𝜓) → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  dmorgafwd-L4.1  452  dmorgbfwd-L4.3  454  peirce2exclmid-P4.41b  513
  Copyright terms: Public domain W3C validator