PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  peirce2exclmid-P4.41b

Theorem peirce2exclmid-P4.41b 513
Description: Law of Excluded Middle from Peirce's Law.

The hypothesis is a special case of Peirce's Law.

Hypothesis
Ref Expression
peirce2exclmid-P4.41b.1 ((((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑))
Assertion
Ref Expression
peirce2exclmid-P4.41b (𝜑 ∨ ¬ 𝜑)

Proof of Theorem peirce2exclmid-P4.41b
StepHypRef Expression
1 norer-P4.2b.CL 372 . . . 4 (¬ (𝜑 ∨ ¬ 𝜑) → ¬ 𝜑)
21ndoril-P3.10 175 . . 3 (¬ (𝜑 ∨ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑))
3 falseie-P4.22b 445 . . . . . 6 (((𝜑 ∨ ¬ 𝜑) → ⊥) ↔ ¬ (𝜑 ∨ ¬ 𝜑))
43bisym-P3.33b.RC 299 . . . . 5 (¬ (𝜑 ∨ ¬ 𝜑) ↔ ((𝜑 ∨ ¬ 𝜑) → ⊥))
54subiml-P3.40a.RC 326 . . . 4 ((¬ (𝜑 ∨ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) ↔ (((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑)))
65rcp-NDBIEF0 240 . . 3 ((¬ (𝜑 ∨ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) → (((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑)))
72, 6rcp-NDIME0 228 . 2 (((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑))
8 peirce2exclmid-P4.41b.1 . 2 ((((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑))
97, 8rcp-NDIME0 228 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-or 144  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator