| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > peirce2exclmid-P4.41b | |||
| Description: Law of Excluded Middle
from Peirce's Law. †
The hypothesis is a special case of Peirce's Law. |
| Ref | Expression |
|---|---|
| peirce2exclmid-P4.41b.1 | ⊢ ((((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑)) |
| Ref | Expression |
|---|---|
| peirce2exclmid-P4.41b | ⊢ (𝜑 ∨ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norer-P4.2b.CL 372 | . . . 4 ⊢ (¬ (𝜑 ∨ ¬ 𝜑) → ¬ 𝜑) | |
| 2 | 1 | ndoril-P3.10 175 | . . 3 ⊢ (¬ (𝜑 ∨ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) |
| 3 | falseie-P4.22b 445 | . . . . . 6 ⊢ (((𝜑 ∨ ¬ 𝜑) → ⊥) ↔ ¬ (𝜑 ∨ ¬ 𝜑)) | |
| 4 | 3 | bisym-P3.33b.RC 299 | . . . . 5 ⊢ (¬ (𝜑 ∨ ¬ 𝜑) ↔ ((𝜑 ∨ ¬ 𝜑) → ⊥)) |
| 5 | 4 | subiml-P3.40a.RC 326 | . . . 4 ⊢ ((¬ (𝜑 ∨ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) ↔ (((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑))) |
| 6 | 5 | rcp-NDBIEF0 240 | . . 3 ⊢ ((¬ (𝜑 ∨ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) → (((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑))) |
| 7 | 2, 6 | rcp-NDIME0 228 | . 2 ⊢ (((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑)) |
| 8 | peirce2exclmid-P4.41b.1 | . 2 ⊢ ((((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑)) | |
| 9 | 7, 8 | rcp-NDIME0 228 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∨ wff-or 144 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |