| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > falseie-P4.22b | |||
| Description: '⊥' Introduction and Elimination (closed form). † |
| Ref | Expression |
|---|---|
| falseie-P4.22b | ⊢ ((𝜑 → ⊥) ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . . 4 ⊢ (((𝜑 → ⊥) ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDASM1of2 193 | . . . 4 ⊢ (((𝜑 → ⊥) ∧ 𝜑) → (𝜑 → ⊥)) | |
| 3 | 1, 2 | ndime-P3.6 171 | . . 3 ⊢ (((𝜑 → ⊥) ∧ 𝜑) → ⊥) |
| 4 | 3 | falsenegi-P4.18 432 | . 2 ⊢ ((𝜑 → ⊥) → ¬ 𝜑) |
| 5 | rcp-NDASM1of1 192 | . . 3 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
| 6 | 5 | impoe-P4.4a 377 | . 2 ⊢ (¬ 𝜑 → (𝜑 → ⊥)) |
| 7 | 4, 6 | rcp-NDBII0 239 | 1 ⊢ ((𝜑 → ⊥) ↔ ¬ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: peirce2exclmid-P4.41b 513 |
| Copyright terms: Public domain | W3C validator |