PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  falseie-P4.22b

Theorem falseie-P4.22b 445
Description: '' Introduction and Elimination (closed form).
Assertion
Ref Expression
falseie-P4.22b ((𝜑 → ⊥) ↔ ¬ 𝜑)

Proof of Theorem falseie-P4.22b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 (((𝜑 → ⊥) ∧ 𝜑) → 𝜑)
2 rcp-NDASM1of2 193 . . . 4 (((𝜑 → ⊥) ∧ 𝜑) → (𝜑 → ⊥))
31, 2ndime-P3.6 171 . . 3 (((𝜑 → ⊥) ∧ 𝜑) → ⊥)
43falsenegi-P4.18 432 . 2 ((𝜑 → ⊥) → ¬ 𝜑)
5 rcp-NDASM1of1 192 . . 3 𝜑 → ¬ 𝜑)
65impoe-P4.4a 377 . 2 𝜑 → (𝜑 → ⊥))
74, 6rcp-NDBII0 239 1 ((𝜑 → ⊥) ↔ ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  peirce2exclmid-P4.41b  513
  Copyright terms: Public domain W3C validator