PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idandthml-P4.23a

Theorem idandthml-P4.23a 446
Description: '' Identity is Any Theorem (left).
Hypothesis
Ref Expression
idandthml-P4.23a.1 𝜑
Assertion
Ref Expression
idandthml-P4.23a ((𝜑𝜓) ↔ 𝜓)

Proof of Theorem idandthml-P4.23a
StepHypRef Expression
1 idandtruel-P4.19a 438 . 2 ((⊤ ∧ 𝜓) ↔ 𝜓)
2 idandthml-P4.23a.1 . . . . . 6 𝜑
32thmeqtrue-P4.21a 442 . . . . 5 (𝜑 ↔ ⊤)
43subandl-P3.42a.RC 340 . . . 4 ((𝜑𝜓) ↔ (⊤ ∧ 𝜓))
54subbil-P3.41a.RC 333 . . 3 (((𝜑𝜓) ↔ 𝜓) ↔ ((⊤ ∧ 𝜓) ↔ 𝜓))
65rcp-NDBIER0 241 . 2 (((⊤ ∧ 𝜓) ↔ 𝜓) → ((𝜑𝜓) ↔ 𝜓))
71, 6rcp-NDIME0 228 1 ((𝜑𝜓) ↔ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  oroverim-P4.28-L1  465  lemma-L6.07a-L2  771
  Copyright terms: Public domain W3C validator