Proof of Theorem lemma-L6.07a-L2
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM1of2 193 |
. . . . 5
⊢ ((𝑥 = 𝑡 ∧
∀𝑥(𝑥
= 𝑡 → 𝜑))
→ 𝑥 = 𝑡) |
| 2 | | lemma-L6.01a 724 |
. . . . . . 7
⊢ (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 3 | 2 | ndbier-P3.15 180 |
. . . . . 6
⊢ (𝑥 = 𝑡 →
(∀𝑥(𝑥 = 𝑡 → 𝜑) → 𝜑)) |
| 4 | 3 | import-P3.34a.RC 306 |
. . . . 5
⊢ ((𝑥 = 𝑡 ∧
∀𝑥(𝑥
= 𝑡 → 𝜑))
→ 𝜑) |
| 5 | 1, 4 | ndandi-P3.7 172 |
. . . 4
⊢ ((𝑥 = 𝑡 ∧
∀𝑥(𝑥
= 𝑡 → 𝜑))
→ (𝑥 = 𝑡
∧ 𝜑)) |
| 6 | 5 | alloverimex-P5.RC.GEN 603 |
. . 3
⊢ (∃𝑥(𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡 → 𝜑)) →
∃𝑥(𝑥
= 𝑡 ∧ 𝜑)) |
| 7 | | nfrall1-P6 741 |
. . . . 5
⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑡 → 𝜑) |
| 8 | 7 | qcexandl-P6 762 |
. . . 4
⊢ ((∃𝑥 𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡 → 𝜑)) ↔
∃𝑥(𝑥
= 𝑡 ∧ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 9 | 8 | bisym-P3.33b.RC 299 |
. . 3
⊢ (∃𝑥(𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡 → 𝜑)) ↔
(∃𝑥 𝑥
= 𝑡 ∧ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 10 | 6, 9 | subiml2-P4.RC 541 |
. 2
⊢ ((∃𝑥 𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡 → 𝜑)) →
∃𝑥(𝑥
= 𝑡 ∧ 𝜑)) |
| 11 | | axL6ex-P5 625 |
. . 3
⊢ ∃𝑥 𝑥 = 𝑡 |
| 12 | 11 | idandthml-P4.23a 446 |
. 2
⊢ ((∃𝑥 𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡 → 𝜑)) ↔
∀𝑥(𝑥
= 𝑡 → 𝜑)) |
| 13 | 10, 12 | subiml2-P4.RC 541 |
1
⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) →
∃𝑥(𝑥
= 𝑡 ∧ 𝜑)) |