PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L6.07a-L2

Theorem lemma-L6.07a-L2 771
Description: Lemma for lemma-L6.06a 766.
Assertion
Ref Expression
lemma-L6.07a-L2 (∀𝑥(𝑥 = 𝑡𝜑) → ∃𝑥(𝑥 = 𝑡𝜑))
Distinct variable group:   𝑡,𝑥

Proof of Theorem lemma-L6.07a-L2
StepHypRef Expression
1 rcp-NDASM1of2 193 . . . . 5 ((𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)) → 𝑥 = 𝑡)
2 lemma-L6.01a 724 . . . . . . 7 (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
32ndbier-P3.15 180 . . . . . 6 (𝑥 = 𝑡 → (∀𝑥(𝑥 = 𝑡𝜑) → 𝜑))
43import-P3.34a.RC 306 . . . . 5 ((𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)) → 𝜑)
51, 4ndandi-P3.7 172 . . . 4 ((𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)) → (𝑥 = 𝑡𝜑))
65alloverimex-P5.RC.GEN 603 . . 3 (∃𝑥(𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)) → ∃𝑥(𝑥 = 𝑡𝜑))
7 nfrall1-P6 741 . . . . 5 𝑥𝑥(𝑥 = 𝑡𝜑)
87qcexandl-P6 762 . . . 4 ((∃𝑥 𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∃𝑥(𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)))
98bisym-P3.33b.RC 299 . . 3 (∃𝑥(𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)) ↔ (∃𝑥 𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)))
106, 9subiml2-P4.RC 541 . 2 ((∃𝑥 𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)) → ∃𝑥(𝑥 = 𝑡𝜑))
11 axL6ex-P5 625 . . 3 𝑥 𝑥 = 𝑡
1211idandthml-P4.23a 446 . 2 ((∃𝑥 𝑥 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥(𝑥 = 𝑡𝜑))
1310, 12subiml2-P4.RC 541 1 (∀𝑥(𝑥 = 𝑡𝜑) → ∃𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  lemma-L6.07a  772
  Copyright terms: Public domain W3C validator