| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L6.07a-L1 | |||
| Description: Lemma for lemma-L6.06a 766. |
| Ref | Expression |
|---|---|
| lemma-L6.07a-L1 | ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L6.01a 724 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) | |
| 2 | 1 | ndbief-P3.14 179 | . . . 4 ⊢ (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 3 | 2 | import-P3.34a.RC 306 | . . 3 ⊢ ((𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 4 | 3 | alloverimex-P5.RC.GEN 603 | . 2 ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∃𝑥∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 5 | nfrall1-P6 741 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑡 → 𝜑) | |
| 6 | 5 | qremex-P6 723 | . 2 ⊢ (∃𝑥∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 7 | 4, 6 | subimr2-P4.RC 543 | 1 ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ∧ wff-and 132 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: lemma-L6.07a 772 |
| Copyright terms: Public domain | W3C validator |