PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L6.07a-L1

Theorem lemma-L6.07a-L1 770
Description: Lemma for lemma-L6.06a 766.
Assertion
Ref Expression
lemma-L6.07a-L1 (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
Distinct variable group:   𝑡,𝑥

Proof of Theorem lemma-L6.07a-L1
StepHypRef Expression
1 lemma-L6.01a 724 . . . . 5 (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
21ndbief-P3.14 179 . . . 4 (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
32import-P3.34a.RC 306 . . 3 ((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
43alloverimex-P5.RC.GEN 603 . 2 (∃𝑥(𝑥 = 𝑡𝜑) → ∃𝑥𝑥(𝑥 = 𝑡𝜑))
5 nfrall1-P6 741 . . 3 𝑥𝑥(𝑥 = 𝑡𝜑)
65qremex-P6 723 . 2 (∃𝑥𝑥(𝑥 = 𝑡𝜑) ↔ ∀𝑥(𝑥 = 𝑡𝜑))
74, 6subimr2-P4.RC 543 1 (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  lemma-L6.07a  772
  Copyright terms: Public domain W3C validator