PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L6.07a

Theorem lemma-L6.07a 772
Description: This lemma is used to construct an alternate definition of proper substitution.

'𝑥' cannot occur in '𝑡'.

Assertion
Ref Expression
lemma-L6.07a (∀𝑥(𝑥 = 𝑡𝜑) ↔ ∃𝑥(𝑥 = 𝑡𝜑))
Distinct variable group:   𝑡,𝑥

Proof of Theorem lemma-L6.07a
StepHypRef Expression
1 lemma-L6.07a-L2 771 . 2 (∀𝑥(𝑥 = 𝑡𝜑) → ∃𝑥(𝑥 = 𝑡𝜑))
2 lemma-L6.07a-L1 770 . 2 (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
31, 2rcp-NDBII0 239 1 (∀𝑥(𝑥 = 𝑡𝜑) ↔ ∃𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  lemma-L6.08a  773
  Copyright terms: Public domain W3C validator