| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L6.07a | |||
| Description: This lemma is used to
construct an alternate definition of proper
substitution.
'𝑥' cannot occur in '𝑡'. |
| Ref | Expression |
|---|---|
| lemma-L6.07a | ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∃𝑥(𝑥 = 𝑡 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L6.07a-L2 771 | . 2 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) → ∃𝑥(𝑥 = 𝑡 ∧ 𝜑)) | |
| 2 | lemma-L6.07a-L1 770 | . 2 ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∃𝑥(𝑥 = 𝑡 ∧ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: lemma-L6.08a 773 |
| Copyright terms: Public domain | W3C validator |