PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L6.06a

Theorem lemma-L6.06a 766
Description: Effective Non-Freeness Over Proper Substitution (restriction on '𝑡').

Note this only holds when '𝑡' does not contain '𝑥'.

Assertion
Ref Expression
lemma-L6.06a 𝑥[𝑡 / 𝑥]𝜑
Distinct variable group:   𝑡,𝑥

Proof of Theorem lemma-L6.06a
StepHypRef Expression
1 nfrall1-P6 741 . 2 𝑥𝑥(𝑥 = 𝑡𝜑)
2 dfpsubv-P6 717 . . 3 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
32nfrleq-P6 687 . 2 (Ⅎ𝑥[𝑡 / 𝑥]𝜑 ↔ Ⅎ𝑥𝑥(𝑥 = 𝑡𝜑))
41, 3bimpr-P4.RC 534 1 𝑥[𝑡 / 𝑥]𝜑
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubcomp-P6  767  cbvallpsub-P6  768  cbvexpsub-P6  769  psuball2v-P6-L1  795  psubsuccv-P6  806  psubaddv-P6  808  psubmultv-P6  810  ndpsub3-P7.15  840
  Copyright terms: Public domain W3C validator