PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubsuccv-P6

Theorem psubsuccv-P6 806
Description: Proper Substitution Over Successor Function (variable restriction).

'𝑎' and '𝑏' are distinct from all other variables and '𝑥' cannot occur in '𝑤'.

Hypothesis
Ref Expression
psubsuccv-P6.1 ([𝑤 / 𝑥] 𝑎 = 𝑡𝑎 = 𝑢)
Assertion
Ref Expression
psubsuccv-P6 ([𝑤 / 𝑥] 𝑏 = s‘𝑡𝑏 = s‘𝑢)
Distinct variable groups:   𝑡,𝑎   𝑢,𝑎   𝑤,𝑎   𝑡,𝑏   𝑢,𝑏   𝑤,𝑏,𝑥,𝑎

Proof of Theorem psubsuccv-P6
StepHypRef Expression
1 lemma-L6.06a 766 . . . . 5 𝑥[𝑤 / 𝑥] 𝑎 = 𝑡
2 psubsuccv-P6.1 . . . . . 6 ([𝑤 / 𝑥] 𝑎 = 𝑡𝑎 = 𝑢)
32nfrleq-P6 687 . . . . 5 (Ⅎ𝑥[𝑤 / 𝑥] 𝑎 = 𝑡 ↔ Ⅎ𝑥 𝑎 = 𝑢)
41, 3bimpf-P4.RC 532 . . . 4 𝑥 𝑎 = 𝑢
54nfrterm-P6 779 . . 3 𝑥 𝑏 = 𝑢
65nfrsucc-P6 780 . 2 𝑥 𝑏 = s‘𝑢
72psubsuccv-P6-L1 805 . 2 (𝑥 = 𝑤 → (𝑏 = s‘𝑡𝑏 = s‘𝑢))
86, 7isubtopsubv-P6 727 1 ([𝑤 / 𝑥] 𝑏 = s‘𝑡𝑏 = s‘𝑢)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  s‘term_succ 3   = wff-equals 6  wff-bi 104  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-succ 22  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator