PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubaddv-P6-L1

Theorem psubaddv-P6-L1 807
Description: Lemma for psubaddv-P6 808.
Hypotheses
Ref Expression
psubaddv-P6-L1.1 ([𝑤 / 𝑥] 𝑎 = 𝑡₁𝑎 = 𝑢₁)
psubaddv-P6-L1.2 ([𝑤 / 𝑥] 𝑏 = 𝑡₂𝑏 = 𝑢₂)
Assertion
Ref Expression
psubaddv-P6-L1 (𝑥 = 𝑤 → (𝑐 = (𝑡₁ + 𝑡₂) ↔ 𝑐 = (𝑢₁ + 𝑢₂)))
Distinct variable groups:   𝑡₁,𝑎   𝑡₂,𝑎   𝑢₁,𝑎   𝑢₂,𝑎   𝑤,𝑎   𝑡₁,𝑏   𝑡₂,𝑏   𝑢₁,𝑏   𝑢₂,𝑏   𝑤,𝑏   𝑡₁,𝑐   𝑢₁,𝑐   𝑢₂,𝑐   𝑤,𝑐   𝑎,𝑏,𝑐,𝑥

Proof of Theorem psubaddv-P6-L1
StepHypRef Expression
1 rcp-NDASM1of3 195 . . . . . . . . 9 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → 𝑎 = 𝑡₁)
21eqsym-P5 627 . . . . . . . 8 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → 𝑡₁ = 𝑎)
3 psubtoisub-P6 765 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝑎 = 𝑡₁ ↔ [𝑤 / 𝑥] 𝑎 = 𝑡₁))
4 psubaddv-P6-L1.1 . . . . . . . . . . . . 13 ([𝑤 / 𝑥] 𝑎 = 𝑡₁𝑎 = 𝑢₁)
54rcp-NDIMP0addall 207 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ([𝑤 / 𝑥] 𝑎 = 𝑡₁𝑎 = 𝑢₁))
63, 5bitrns-P3.33c 302 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑎 = 𝑡₁𝑎 = 𝑢₁))
76rcp-NDIMP0addall 207 . . . . . . . . . 10 ((𝑎 = 𝑡₁𝑏 = 𝑡₂) → (𝑥 = 𝑤 → (𝑎 = 𝑡₁𝑎 = 𝑢₁)))
87rcp-IMPIME2 528 . . . . . . . . 9 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → (𝑎 = 𝑡₁𝑎 = 𝑢₁))
91, 8bimpf-P4 531 . . . . . . . 8 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → 𝑎 = 𝑢₁)
102, 9eqtrns-P5 630 . . . . . . 7 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → 𝑡₁ = 𝑢₁)
11 rcp-NDASM2of3 196 . . . . . . . . 9 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → 𝑏 = 𝑡₂)
1211eqsym-P5 627 . . . . . . . 8 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → 𝑡₂ = 𝑏)
13 psubtoisub-P6 765 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝑏 = 𝑡₂ ↔ [𝑤 / 𝑥] 𝑏 = 𝑡₂))
14 psubaddv-P6-L1.2 . . . . . . . . . . . . 13 ([𝑤 / 𝑥] 𝑏 = 𝑡₂𝑏 = 𝑢₂)
1514rcp-NDIMP0addall 207 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ([𝑤 / 𝑥] 𝑏 = 𝑡₂𝑏 = 𝑢₂))
1613, 15bitrns-P3.33c 302 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑏 = 𝑡₂𝑏 = 𝑢₂))
1716rcp-NDIMP0addall 207 . . . . . . . . . 10 ((𝑎 = 𝑡₁𝑏 = 𝑡₂) → (𝑥 = 𝑤 → (𝑏 = 𝑡₂𝑏 = 𝑢₂)))
1817rcp-IMPIME2 528 . . . . . . . . 9 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → (𝑏 = 𝑡₂𝑏 = 𝑢₂))
1911, 18bimpf-P4 531 . . . . . . . 8 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → 𝑏 = 𝑢₂)
2012, 19eqtrns-P5 630 . . . . . . 7 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → 𝑡₂ = 𝑢₂)
2110, 20subaddd-P5 647 . . . . . 6 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → (𝑡₁ + 𝑡₂) = (𝑢₁ + 𝑢₂))
2221subeqr-P5 635 . . . . 5 ((𝑎 = 𝑡₁𝑏 = 𝑡₂𝑥 = 𝑤) → (𝑐 = (𝑡₁ + 𝑡₂) ↔ 𝑐 = (𝑢₁ + 𝑢₂)))
2322rcp-NDIMI3 225 . . . 4 ((𝑎 = 𝑡₁𝑏 = 𝑡₂) → (𝑥 = 𝑤 → (𝑐 = (𝑡₁ + 𝑡₂) ↔ 𝑐 = (𝑢₁ + 𝑢₂))))
2423rcp-NDIMI2 224 . . 3 (𝑎 = 𝑡₁ → (𝑏 = 𝑡₂ → (𝑥 = 𝑤 → (𝑐 = (𝑡₁ + 𝑡₂) ↔ 𝑐 = (𝑢₁ + 𝑢₂)))))
25 axL6ex-P5 625 . . 3 𝑎 𝑎 = 𝑡₁
2624, 25exiav-P5.SH 616 . 2 (𝑏 = 𝑡₂ → (𝑥 = 𝑤 → (𝑐 = (𝑡₁ + 𝑡₂) ↔ 𝑐 = (𝑢₁ + 𝑢₂))))
27 axL6ex-P5 625 . 2 𝑏 𝑏 = 𝑡₂
2826, 27exiav-P5.SH 616 1 (𝑥 = 𝑤 → (𝑐 = (𝑡₁ + 𝑡₂) ↔ 𝑐 = (𝑢₁ + 𝑢₂)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   + term-add 4   = wff-equals 6  wff-imp 10  wff-bi 104  wff-and 132  wff-rcp-AND3 160  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-addl 23  ax-L9-addr 24  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubaddv-P6  808
  Copyright terms: Public domain W3C validator