PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subeqr-P5

Theorem subeqr-P5 635
Description: Right Substitution Law for '=' .
Hypothesis
Ref Expression
subeqr-P5.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
subeqr-P5 (𝛾 → (𝑤 = 𝑡𝑤 = 𝑢))

Proof of Theorem subeqr-P5
StepHypRef Expression
1 subeqr-P5.1 . 2 (𝛾𝑡 = 𝑢)
2 subeqr-P5-L1 634 . . 3 (𝑡 = 𝑢 → (𝑤 = 𝑡𝑤 = 𝑢))
3 subeqr-P5-L1 634 . . . 4 (𝑢 = 𝑡 → (𝑤 = 𝑢𝑤 = 𝑡))
4 eqsym-P5.CL.SYM 629 . . . 4 (𝑢 = 𝑡𝑡 = 𝑢)
53, 4subiml2-P4.RC 541 . . 3 (𝑡 = 𝑢 → (𝑤 = 𝑢𝑤 = 𝑡))
62, 5ndbii-P3.13 178 . 2 (𝑡 = 𝑢 → (𝑤 = 𝑡𝑤 = 𝑢))
71, 6syl-P3.24.RC 260 1 (𝛾 → (𝑤 = 𝑡𝑤 = 𝑢))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  subeqr-P5.CL  636  subeqd-P5  637  example-E5.02a  664  eqmiddle-P6  708  example-E6.02a  712  nfrsucc-P6  780  nfradd-P6  781  nfrmult-P6  782  psubsuccv-P6-L1  805  psubaddv-P6-L1  807  psubmultv-P6-L1  809  ndsubeqr-P7.22b  848
  Copyright terms: Public domain W3C validator