| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subeqr-P5 | |||
| Description: Right Substitution Law for '=' . |
| Ref | Expression |
|---|---|
| subeqr-P5.1 | ⊢ (𝛾 → 𝑡 = 𝑢) |
| Ref | Expression |
|---|---|
| subeqr-P5 | ⊢ (𝛾 → (𝑤 = 𝑡 ↔ 𝑤 = 𝑢)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subeqr-P5.1 | . 2 ⊢ (𝛾 → 𝑡 = 𝑢) | |
| 2 | subeqr-P5-L1 634 | . . 3 ⊢ (𝑡 = 𝑢 → (𝑤 = 𝑡 → 𝑤 = 𝑢)) | |
| 3 | subeqr-P5-L1 634 | . . . 4 ⊢ (𝑢 = 𝑡 → (𝑤 = 𝑢 → 𝑤 = 𝑡)) | |
| 4 | eqsym-P5.CL.SYM 629 | . . . 4 ⊢ (𝑢 = 𝑡 ↔ 𝑡 = 𝑢) | |
| 5 | 3, 4 | subiml2-P4.RC 541 | . . 3 ⊢ (𝑡 = 𝑢 → (𝑤 = 𝑢 → 𝑤 = 𝑡)) |
| 6 | 2, 5 | ndbii-P3.13 178 | . 2 ⊢ (𝑡 = 𝑢 → (𝑤 = 𝑡 ↔ 𝑤 = 𝑢)) |
| 7 | 1, 6 | syl-P3.24.RC 260 | 1 ⊢ (𝛾 → (𝑤 = 𝑡 ↔ 𝑤 = 𝑢)) |
| Colors of variables: wff objvar term class |
| Syntax hints: = wff-equals 6 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: subeqr-P5.CL 636 subeqd-P5 637 example-E5.02a 664 eqmiddle-P6 708 example-E6.02a 712 nfrsucc-P6 780 nfradd-P6 781 nfrmult-P6 782 psubsuccv-P6-L1 805 psubaddv-P6-L1 807 psubmultv-P6-L1 809 ndsubeqr-P7.22b 848 |
| Copyright terms: Public domain | W3C validator |