PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subeqd-P5

Theorem subeqd-P5 637
Description: Dual Substitution Law for '='.
Hypotheses
Ref Expression
subeqd-P5.1 (𝛾𝑠 = 𝑡)
subeqd-P5.2 (𝛾𝑢 = 𝑤)
Assertion
Ref Expression
subeqd-P5 (𝛾 → (𝑠 = 𝑢𝑡 = 𝑤))

Proof of Theorem subeqd-P5
StepHypRef Expression
1 subeqd-P5.1 . . 3 (𝛾𝑠 = 𝑡)
21subeql-P5 632 . 2 (𝛾 → (𝑠 = 𝑢𝑡 = 𝑢))
3 subeqd-P5.2 . . 3 (𝛾𝑢 = 𝑤)
43subeqr-P5 635 . 2 (𝛾 → (𝑡 = 𝑢𝑡 = 𝑤))
52, 4bitrns-P3.33c 302 1 (𝛾 → (𝑠 = 𝑢𝑡 = 𝑤))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  example-E5.01a  663
  Copyright terms: Public domain W3C validator