| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subelofl-P5 | |||
| Description: Left Substitution for '∈'. |
| Ref | Expression |
|---|---|
| subelofl-P5.1 | ⊢ (𝛾 → 𝑡 = 𝑢) |
| Ref | Expression |
|---|---|
| subelofl-P5 | ⊢ (𝛾 → (𝑡 ∈ 𝑤 ↔ 𝑢 ∈ 𝑤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subelofl-P5.1 | . 2 ⊢ (𝛾 → 𝑡 = 𝑢) | |
| 2 | ax-L8-inl 20 | . . 3 ⊢ (𝑡 = 𝑢 → (𝑡 ∈ 𝑤 → 𝑢 ∈ 𝑤)) | |
| 3 | ax-L8-inl 20 | . . . 4 ⊢ (𝑢 = 𝑡 → (𝑢 ∈ 𝑤 → 𝑡 ∈ 𝑤)) | |
| 4 | eqsym-P5.CL.SYM 629 | . . . 4 ⊢ (𝑢 = 𝑡 ↔ 𝑡 = 𝑢) | |
| 5 | 3, 4 | subiml2-P4.RC 541 | . . 3 ⊢ (𝑡 = 𝑢 → (𝑢 ∈ 𝑤 → 𝑡 ∈ 𝑤)) |
| 6 | 2, 5 | ndbii-P3.13 178 | . 2 ⊢ (𝑡 = 𝑢 → (𝑡 ∈ 𝑤 ↔ 𝑢 ∈ 𝑤)) |
| 7 | 1, 6 | syl-P3.24.RC 260 | 1 ⊢ (𝛾 → (𝑡 ∈ 𝑤 ↔ 𝑢 ∈ 𝑤)) |
| Colors of variables: wff objvar term class |
| Syntax hints: = wff-equals 6 ∈ wff-elemof 7 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L8-inl 20 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: subelofl-P5.CL 639 subelofd-P5 642 ndsubelofl-P7.23a 849 |
| Copyright terms: Public domain | W3C validator |