PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subelofd-P5

Theorem subelofd-P5 642
Description: Dual Substitution for ''.
Hypotheses
Ref Expression
subelofd-P5.1 (𝛾𝑠 = 𝑡)
subelofd-P5.2 (𝛾𝑢 = 𝑤)
Assertion
Ref Expression
subelofd-P5 (𝛾 → (𝑠𝑢𝑡𝑤))

Proof of Theorem subelofd-P5
StepHypRef Expression
1 subelofd-P5.1 . . 3 (𝛾𝑠 = 𝑡)
21subelofl-P5 638 . 2 (𝛾 → (𝑠𝑢𝑡𝑢))
3 subelofd-P5.2 . . 3 (𝛾𝑢 = 𝑤)
43subelofr-P5 640 . 2 (𝛾 → (𝑡𝑢𝑡𝑤))
52, 4bitrns-P3.33c 302 1 (𝛾 → (𝑠𝑢𝑡𝑤))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-elemof 7  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L8-inl 20  ax-L8-inr 21
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  subelofd-P5.CL  643
  Copyright terms: Public domain W3C validator