PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subelofr-P5

Theorem subelofr-P5 640
Description: Right Substitution for ''.
Hypothesis
Ref Expression
subelofr-P5.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
subelofr-P5 (𝛾 → (𝑤𝑡𝑤𝑢))

Proof of Theorem subelofr-P5
StepHypRef Expression
1 subelofr-P5.1 . 2 (𝛾𝑡 = 𝑢)
2 ax-L8-inr 21 . . 3 (𝑡 = 𝑢 → (𝑤𝑡𝑤𝑢))
3 ax-L8-inr 21 . . . 4 (𝑢 = 𝑡 → (𝑤𝑢𝑤𝑡))
4 eqsym-P5.CL.SYM 629 . . . 4 (𝑢 = 𝑡𝑡 = 𝑢)
53, 4subiml2-P4.RC 541 . . 3 (𝑡 = 𝑢 → (𝑤𝑢𝑤𝑡))
62, 5ndbii-P3.13 178 . 2 (𝑡 = 𝑢 → (𝑤𝑡𝑤𝑢))
71, 6syl-P3.24.RC 260 1 (𝛾 → (𝑤𝑡𝑤𝑢))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-elemof 7  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L8-inr 21
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  subelofr-P5.CL  641  subelofd-P5  642  example-E5.03a  665  ndsubelofr-P7.23b  850
  Copyright terms: Public domain W3C validator