PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubelofr-P7.23b

Theorem ndsubelofr-P7.23b 850
Description: Natural Deduction: Predicate Substitution Rule ('' right).
Hypothesis
Ref Expression
ndsubelofr-P7.23b.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
ndsubelofr-P7.23b (𝛾 → (𝑤𝑡𝑤𝑢))

Proof of Theorem ndsubelofr-P7.23b
StepHypRef Expression
1 ndsubelofr-P7.23b.1 . 2 (𝛾𝑡 = 𝑢)
21subelofr-P5 640 1 (𝛾 → (𝑤𝑡𝑤𝑢))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-elemof 7  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L8-inr 21
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  ndsubelofd-P7  857  ndsubelofr-P7.23b.RC  895  ndsubelofr-P7.23b.CL  915
  Copyright terms: Public domain W3C validator