PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E5.03a

Theorem example-E5.03a 665
Description: Hypothesis Elimination Example 3.
Assertion
Ref Expression
example-E5.03a (𝑥 = 𝑥₁ → (∀𝑧(𝑧𝑥 ↔ ∀𝑥(𝑥𝑧𝑥𝑦)) ↔ ∀𝑧(𝑧𝑥₁ ↔ ∀𝑎(𝑎𝑧𝑎𝑦))))
Distinct variable group:   𝑥,𝑎,𝑥₁,𝑦,𝑧

Proof of Theorem example-E5.03a
StepHypRef Expression
1 rcp-NDASM1of1 192 . . . 4 (𝑥 = 𝑥₁𝑥 = 𝑥₁)
21subelofr-P5 640 . . 3 (𝑥 = 𝑥₁ → (𝑧𝑥𝑧𝑥₁))
3 subelofl-P5.CL 639 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝑧𝑎𝑧))
4 subelofl-P5.CL 639 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝑦𝑎𝑦))
53, 4subimd-P3.40c 329 . . . . 5 (𝑥 = 𝑎 → ((𝑥𝑧𝑥𝑦) ↔ (𝑎𝑧𝑎𝑦)))
65cbvallv-P5 659 . . . 4 (∀𝑥(𝑥𝑧𝑥𝑦) ↔ ∀𝑎(𝑎𝑧𝑎𝑦))
76rcp-NDIMP0addall 207 . . 3 (𝑥 = 𝑥₁ → (∀𝑥(𝑥𝑧𝑥𝑦) ↔ ∀𝑎(𝑎𝑧𝑎𝑦)))
82, 7subbid-P3.41c 336 . 2 (𝑥 = 𝑥₁ → ((𝑧𝑥 ↔ ∀𝑥(𝑥𝑧𝑥𝑦)) ↔ (𝑧𝑥₁ ↔ ∀𝑎(𝑎𝑧𝑎𝑦))))
98suballv-P5 623 1 (𝑥 = 𝑥₁ → (∀𝑧(𝑧𝑥 ↔ ∀𝑥(𝑥𝑧𝑥𝑦)) ↔ ∀𝑧(𝑧𝑥₁ ↔ ∀𝑎(𝑎𝑧𝑎𝑦))))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-elemof 7  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L8-inl 20  ax-L8-inr 21
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator