| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > example-E5.03a | |||
| Description: Hypothesis Elimination Example 3. |
| Ref | Expression |
|---|---|
| example-E5.03a | ⊢ (𝑥 = 𝑥₁ → (∀𝑧(𝑧 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦)) ↔ ∀𝑧(𝑧 ∈ 𝑥₁ ↔ ∀𝑎(𝑎 ∈ 𝑧 → 𝑎 ∈ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM1of1 192 | . . . 4 ⊢ (𝑥 = 𝑥₁ → 𝑥 = 𝑥₁) | |
| 2 | 1 | subelofr-P5 640 | . . 3 ⊢ (𝑥 = 𝑥₁ → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥₁)) |
| 3 | subelofl-P5.CL 639 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝑧 ↔ 𝑎 ∈ 𝑧)) | |
| 4 | subelofl-P5.CL 639 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝑦 ↔ 𝑎 ∈ 𝑦)) | |
| 5 | 3, 4 | subimd-P3.40c 329 | . . . . 5 ⊢ (𝑥 = 𝑎 → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) ↔ (𝑎 ∈ 𝑧 → 𝑎 ∈ 𝑦))) |
| 6 | 5 | cbvallv-P5 659 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) ↔ ∀𝑎(𝑎 ∈ 𝑧 → 𝑎 ∈ 𝑦)) |
| 7 | 6 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝑥 = 𝑥₁ → (∀𝑥(𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) ↔ ∀𝑎(𝑎 ∈ 𝑧 → 𝑎 ∈ 𝑦))) |
| 8 | 2, 7 | subbid-P3.41c 336 | . 2 ⊢ (𝑥 = 𝑥₁ → ((𝑧 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦)) ↔ (𝑧 ∈ 𝑥₁ ↔ ∀𝑎(𝑎 ∈ 𝑧 → 𝑎 ∈ 𝑦)))) |
| 9 | 8 | suballv-P5 623 | 1 ⊢ (𝑥 = 𝑥₁ → (∀𝑧(𝑧 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦)) ↔ ∀𝑧(𝑧 ∈ 𝑥₁ ↔ ∀𝑎(𝑎 ∈ 𝑧 → 𝑎 ∈ 𝑦)))) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∈ wff-elemof 7 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L8-inl 20 ax-L8-inr 21 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |