PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subbid-P3.41c

Theorem subbid-P3.41c 336
Description: Dual Substitution Law for ''.
Hypotheses
Ref Expression
subbid-P3.41c.1 (𝛾 → (𝜑𝜓))
subbid-P3.41c.2 (𝛾 → (𝜒𝜗))
Assertion
Ref Expression
subbid-P3.41c (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))

Proof of Theorem subbid-P3.41c
StepHypRef Expression
1 subbid-P3.41c.1 . . 3 (𝛾 → (𝜑𝜓))
21subbil-P3.41a 332 . 2 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
3 subbid-P3.41c.2 . . 3 (𝛾 → (𝜒𝜗))
43subbir-P3.41b 334 . 2 (𝛾 → ((𝜓𝜒) ↔ (𝜓𝜗)))
52, 4bitrns-P3.33c 302 1 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  subbid-P3.41c.RC  337  negbicancel-P4.11  419  negbicancelint-P4.14  424  subbid2-P4  550  example-E5.03a  665
  Copyright terms: Public domain W3C validator