PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subbid2-P4

Theorem subbid2-P4 550
Description: Alternate Form of subbid-P3.41c 336.
Hypotheses
Ref Expression
subbid2-P4.1 (𝛾 → (𝜑𝜒))
subbid2-P4.2 (𝛾 → (𝜑𝜓))
subbid2-P4.3 (𝛾 → (𝜒𝜗))
Assertion
Ref Expression
subbid2-P4 (𝛾 → (𝜓𝜗))

Proof of Theorem subbid2-P4
StepHypRef Expression
1 subbid2-P4.1 . 2 (𝛾 → (𝜑𝜒))
2 subbid2-P4.2 . . . 4 (𝛾 → (𝜑𝜓))
3 subbid2-P4.3 . . . 4 (𝛾 → (𝜒𝜗))
42, 3subbid-P3.41c 336 . . 3 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))
54ndbief-P3.14 179 . 2 (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
61, 5ndime-P3.6 171 1 (𝛾 → (𝜓𝜗))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  subbid2-P4.RC  551  subnfr-P6  755
  Copyright terms: Public domain W3C validator