PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subnfr-P6

Theorem subnfr-P6 755
Description: Substitution Law for '𝑥' Predicate.
Hypotheses
Ref Expression
subnfr.1 𝑥𝛾
subnfr.2 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subnfr-P6 (𝛾 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))

Proof of Theorem subnfr-P6
StepHypRef Expression
1 subnfr.1 . . . 4 𝑥𝛾
2 subnfr.2 . . . 4 (𝛾 → (𝜑𝜓))
31, 2subex-P6 754 . . 3 (𝛾 → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
41, 2suball-P6 753 . . 3 (𝛾 → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
53, 4subimd-P3.40c 329 . 2 (𝛾 → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜓 → ∀𝑥𝜓)))
6 dfnfreealt-P6 683 . . . 4 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
76bisym-P3.33b.RC 299 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ Ⅎ𝑥𝜑)
87rcp-NDIMP0addall 207 . 2 (𝛾 → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ Ⅎ𝑥𝜑))
9 dfnfreealt-P6 683 . . . 4 (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓))
109bisym-P3.33b.RC 299 . . 3 ((∃𝑥𝜓 → ∀𝑥𝜓) ↔ Ⅎ𝑥𝜓)
1110rcp-NDIMP0addall 207 . 2 (𝛾 → ((∃𝑥𝜓 → ∀𝑥𝜓) ↔ Ⅎ𝑥𝜓))
125, 8, 11subbid2-P4 550 1 (𝛾 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  subnfr-P6.VR  756  nfrsucc-P6  780  nfradd-P6  781  nfrmult-P6  782  ndnfrleq-P7.11  836
  Copyright terms: Public domain W3C validator