| Step | Hyp | Ref
| Expression |
| 1 | | nfrv-P6 686 |
. . . . . 6
⊢ Ⅎ𝑥 𝑎 = (𝑏 + 𝑐) |
| 2 | 1 | rcp-NDIMP0addall 207 |
. . . . 5
⊢ ((𝑏 = 𝑡₁
∧ 𝑐 = 𝑡₂) → Ⅎ𝑥 𝑎 = (𝑏 + 𝑐)) |
| 3 | | nfradd-P6.1 |
. . . . . . . 8
⊢ Ⅎ𝑥 𝑎 = 𝑡₁ |
| 4 | 3 | nfrterm-P6 779 |
. . . . . . 7
⊢ Ⅎ𝑥 𝑏 = 𝑡₁ |
| 5 | | nfradd-P6.2 |
. . . . . . . 8
⊢ Ⅎ𝑥 𝑎 = 𝑡₂ |
| 6 | 5 | nfrterm-P6 779 |
. . . . . . 7
⊢ Ⅎ𝑥 𝑐 = 𝑡₂ |
| 7 | 4, 6 | nfrand-P6 690 |
. . . . . 6
⊢ Ⅎ𝑥(𝑏 = 𝑡₁ ∧ 𝑐
= 𝑡₂) |
| 8 | | subaddd-P5.CL 648 |
. . . . . . 7
⊢ ((𝑏 = 𝑡₁
∧ 𝑐 = 𝑡₂) → (𝑏 + 𝑐) = (𝑡₁ + 𝑡₂)) |
| 9 | 8 | subeqr-P5 635 |
. . . . . 6
⊢ ((𝑏 = 𝑡₁
∧ 𝑐 = 𝑡₂) → (𝑎 = (𝑏 + 𝑐) ↔ 𝑎 =
(𝑡₁ + 𝑡₂))) |
| 10 | 7, 9 | subnfr-P6 755 |
. . . . 5
⊢ ((𝑏 = 𝑡₁
∧ 𝑐 = 𝑡₂) → (Ⅎ𝑥 𝑎 = (𝑏 + 𝑐) ↔
Ⅎ𝑥 𝑎
= (𝑡₁ + 𝑡₂))) |
| 11 | 2, 10 | bimpf-P4 531 |
. . . 4
⊢ ((𝑏 = 𝑡₁
∧ 𝑐 = 𝑡₂) → Ⅎ𝑥 𝑎 = (𝑡₁ + 𝑡₂)) |
| 12 | 11 | rcp-NDIMI2 224 |
. . 3
⊢ (𝑏 = 𝑡₁
→ (𝑐 = 𝑡₂ → Ⅎ𝑥 𝑎 = (𝑡₁ + 𝑡₂))) |
| 13 | | axL6ex-P5 625 |
. . 3
⊢ ∃𝑏 𝑏 = 𝑡₁ |
| 14 | 12, 13 | exiav-P5.SH 616 |
. 2
⊢ (𝑐 = 𝑡₂
→ Ⅎ𝑥 𝑎 = (𝑡₁ +
𝑡₂)) |
| 15 | | axL6ex-P5 625 |
. 2
⊢ ∃𝑐 𝑐 = 𝑡₂ |
| 16 | 14, 15 | exiav-P5.SH 616 |
1
⊢ Ⅎ𝑥 𝑎 = (𝑡₁ + 𝑡₂) |