PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfradd-P6

Theorem nfradd-P6 781
Description: If '𝑥' is ENF in the terms '𝑡₁' and '𝑡₂', then '𝑥' is ENF in the sum term '(𝑡₁ + 𝑡₂)'.

'𝑎' is distinct from all other variables.

Hypotheses
Ref Expression
nfradd-P6.1 𝑥 𝑎 = 𝑡₁
nfradd-P6.2 𝑥 𝑎 = 𝑡₂
Assertion
Ref Expression
nfradd-P6 𝑥 𝑎 = (𝑡₁ + 𝑡₂)
Distinct variable groups:   𝑡₁,𝑎   𝑡₂,𝑎   𝑥,𝑎

Proof of Theorem nfradd-P6
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfrv-P6 686 . . . . . 6 𝑥 𝑎 = (𝑏 + 𝑐)
21rcp-NDIMP0addall 207 . . . . 5 ((𝑏 = 𝑡₁𝑐 = 𝑡₂) → Ⅎ𝑥 𝑎 = (𝑏 + 𝑐))
3 nfradd-P6.1 . . . . . . . 8 𝑥 𝑎 = 𝑡₁
43nfrterm-P6 779 . . . . . . 7 𝑥 𝑏 = 𝑡₁
5 nfradd-P6.2 . . . . . . . 8 𝑥 𝑎 = 𝑡₂
65nfrterm-P6 779 . . . . . . 7 𝑥 𝑐 = 𝑡₂
74, 6nfrand-P6 690 . . . . . 6 𝑥(𝑏 = 𝑡₁𝑐 = 𝑡₂)
8 subaddd-P5.CL 648 . . . . . . 7 ((𝑏 = 𝑡₁𝑐 = 𝑡₂) → (𝑏 + 𝑐) = (𝑡₁ + 𝑡₂))
98subeqr-P5 635 . . . . . 6 ((𝑏 = 𝑡₁𝑐 = 𝑡₂) → (𝑎 = (𝑏 + 𝑐) ↔ 𝑎 = (𝑡₁ + 𝑡₂)))
107, 9subnfr-P6 755 . . . . 5 ((𝑏 = 𝑡₁𝑐 = 𝑡₂) → (Ⅎ𝑥 𝑎 = (𝑏 + 𝑐) ↔ Ⅎ𝑥 𝑎 = (𝑡₁ + 𝑡₂)))
112, 10bimpf-P4 531 . . . 4 ((𝑏 = 𝑡₁𝑐 = 𝑡₂) → Ⅎ𝑥 𝑎 = (𝑡₁ + 𝑡₂))
1211rcp-NDIMI2 224 . . 3 (𝑏 = 𝑡₁ → (𝑐 = 𝑡₂ → Ⅎ𝑥 𝑎 = (𝑡₁ + 𝑡₂)))
13 axL6ex-P5 625 . . 3 𝑏 𝑏 = 𝑡₁
1412, 13exiav-P5.SH 616 . 2 (𝑐 = 𝑡₂ → Ⅎ𝑥 𝑎 = (𝑡₁ + 𝑡₂))
15 axL6ex-P5 625 . 2 𝑐 𝑐 = 𝑡₂
1614, 15exiav-P5.SH 616 1 𝑥 𝑎 = (𝑡₁ + 𝑡₂)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   + term-add 4   = wff-equals 6  wff-imp 10  wff-and 132  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-addl 23  ax-L9-addr 24  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  psubaddv-P6  808
  Copyright terms: Public domain W3C validator