PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrand-P6

Theorem nfrand-P6 690
Description: ENF Over Conjunction.
Hypotheses
Ref Expression
nfrand-P6.1 𝑥𝜑
nfrand-P6.2 𝑥𝜓
Assertion
Ref Expression
nfrand-P6 𝑥(𝜑𝜓)

Proof of Theorem nfrand-P6
StepHypRef Expression
1 nfrand-P6.1 . . . 4 𝑥𝜑
2 nfrand-P6.2 . . . . 5 𝑥𝜓
3 nfrneg-P6 688 . . . . 5 (Ⅎ𝑥 ¬ 𝜓 ↔ Ⅎ𝑥𝜓)
42, 3bimpr-P4.RC 534 . . . 4 𝑥 ¬ 𝜓
51, 4nfrim-P6 689 . . 3 𝑥(𝜑 → ¬ 𝜓)
6 nfrneg-P6 688 . . 3 (Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) ↔ Ⅎ𝑥(𝜑 → ¬ 𝜓))
75, 6bimpr-P4.RC 534 . 2 𝑥 ¬ (𝜑 → ¬ 𝜓)
8 andasim-P3.46a 356 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
98nfrleq-P6 687 . 2 (Ⅎ𝑥(𝜑𝜓) ↔ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓))
107, 9bimpr-P4.RC 534 1 𝑥(𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrbi-P6  691  nfradd-P6  781  nfrmult-P6  782
  Copyright terms: Public domain W3C validator