| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrand-P6 | |||
| Description: ENF Over Conjunction. |
| Ref | Expression |
|---|---|
| nfrand-P6.1 | ⊢ Ⅎ𝑥𝜑 |
| nfrand-P6.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfrand-P6 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrand-P6.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfrand-P6.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 3 | nfrneg-P6 688 | . . . . 5 ⊢ (Ⅎ𝑥 ¬ 𝜓 ↔ Ⅎ𝑥𝜓) | |
| 4 | 2, 3 | bimpr-P4.RC 534 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 5 | 1, 4 | nfrim-P6 689 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
| 6 | nfrneg-P6 688 | . . 3 ⊢ (Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) ↔ Ⅎ𝑥(𝜑 → ¬ 𝜓)) | |
| 7 | 5, 6 | bimpr-P4.RC 534 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
| 8 | andasim-P3.46a 356 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
| 9 | 8 | nfrleq-P6 687 | . 2 ⊢ (Ⅎ𝑥(𝜑 ∧ 𝜓) ↔ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓)) |
| 10 | 7, 9 | bimpr-P4.RC 534 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrbi-P6 691 nfradd-P6 781 nfrmult-P6 782 |
| Copyright terms: Public domain | W3C validator |