PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrbi-P6

Theorem nfrbi-P6 691
Description: ENF Over Equivalency.
Hypotheses
Ref Expression
nfrbi-P6.1 𝑥𝜑
nfrbi-P6.2 𝑥𝜓
Assertion
Ref Expression
nfrbi-P6 𝑥(𝜑𝜓)

Proof of Theorem nfrbi-P6
StepHypRef Expression
1 nfrbi-P6.1 . . . 4 𝑥𝜑
2 nfrbi-P6.2 . . . 4 𝑥𝜓
31, 2nfrim-P6 689 . . 3 𝑥(𝜑𝜓)
42, 1nfrim-P6 689 . . 3 𝑥(𝜓𝜑)
53, 4nfrand-P6 690 . 2 𝑥((𝜑𝜓) ∧ (𝜓𝜑))
6 dfbi-P3.47 358 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
76nfrleq-P6 687 . 2 (Ⅎ𝑥(𝜑𝜓) ↔ Ⅎ𝑥((𝜑𝜓) ∧ (𝜓𝜑)))
85, 7bimpr-P4.RC 534 1 𝑥(𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  trnsvsubw-P6  710  trnsvsub-P6  763  spliteq-P6  776  splitelof-P6  778
  Copyright terms: Public domain W3C validator