PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrall1w-P6

Theorem nfrall1w-P6 692
Description: ENF Over Universal Quantifier (same variable - weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

Hypothesis
Ref Expression
nfrall1w-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
Assertion
Ref Expression
nfrall1w-P6 𝑥𝑥𝜑
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem nfrall1w-P6
StepHypRef Expression
1 nfrall1w-P6.1 . . . 4 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21cbvallv-P5 659 . . 3 (∀𝑥𝜑 ↔ ∀𝑥₁𝜑₁)
32rcp-NDIMP0addall 207 . 2 (𝑥 = 𝑥₁ → (∀𝑥𝜑 ↔ ∀𝑥₁𝜑₁))
41genallw-P6 676 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
53, 4gennfrw-P6 685 1 𝑥𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator