PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  genallw-P6

Theorem genallw-P6 676
Description: The WFF 𝑥𝜑 is General for '𝑥' (weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

Hypothesis
Ref Expression
genallw-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
Assertion
Ref Expression
genallw-P6 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem genallw-P6
StepHypRef Expression
1 ax-L5 17 . 2 (∀𝑥₁𝜑₁ → ∀𝑥𝑥₁𝜑₁)
2 genallw-P6.1 . . . 4 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
32cbvallv-P5 659 . . 3 (∀𝑥𝜑 ↔ ∀𝑥₁𝜑₁)
43bisym-P3.33b.RC 299 . 2 (∀𝑥₁𝜑₁ ↔ ∀𝑥𝜑)
54suballinf-P5 594 . 2 (∀𝑥𝑥₁𝜑₁ ↔ ∀𝑥𝑥𝜑)
61, 4, 5subimd2-P4.RC 545 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  gennexw-P6  679  nfrall1w-P6  692
  Copyright terms: Public domain W3C validator