PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  suballinf-P5

Theorem suballinf-P5 594
Description: Inference Version of '𝑥' Substitution Law.

For the deductive form with a variable restriction, see suballv-P5 623. For the most general form, see suball-P6 753.

Hypothesis
Ref Expression
suballinf-P5.1 (𝜑𝜓)
Assertion
Ref Expression
suballinf-P5 (∀𝑥𝜑 ↔ ∀𝑥𝜓)

Proof of Theorem suballinf-P5
StepHypRef Expression
1 suballinf-P5.1 . . . . 5 (𝜑𝜓)
21rcp-NDBIEF0 240 . . . 4 (𝜑𝜓)
32ax-GEN 15 . . 3 𝑥(𝜑𝜓)
43alloverim-P5.RC 589 . 2 (∀𝑥𝜑 → ∀𝑥𝜓)
51rcp-NDBIER0 241 . . . 4 (𝜓𝜑)
65ax-GEN 15 . . 3 𝑥(𝜓𝜑)
76alloverim-P5.RC 589 . 2 (∀𝑥𝜓 → ∀𝑥𝜑)
84, 7rcp-NDBII0 239 1 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  exnegall-P5  598  alloverimex-P5  601  lemma-L5.03a  666  example-E5.04a  675  genallw-P6  676  genexw-P6  677  gennallw-P6  678  gennexw-P6  679  nfrleq-P6  687  nfrneg-P6  688  solvesub-P6a  704  solvedsub-P6a  711  lemma-L6.02a  726  lemma-L6.03a  728  genex-P6  731  gennex-P6  738  lemma-L6.08a  773  psubleq-P6  783  psubnfr-P6  784  psubneg-P6  788  psuball2v-P6  796  psubex2v-P6  797
  Copyright terms: Public domain W3C validator