| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > suballinf-P5 | |||
| Description: Inference Version of
'∀𝑥'
Substitution Law.
For the deductive form with a variable restriction, see suballv-P5 623. For the most general form, see suball-P6 753. |
| Ref | Expression |
|---|---|
| suballinf-P5.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| suballinf-P5 | ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suballinf-P5.1 | . . . . 5 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | rcp-NDBIEF0 240 | . . . 4 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | ax-GEN 15 | . . 3 ⊢ ∀𝑥(𝜑 → 𝜓) |
| 4 | 3 | alloverim-P5.RC 589 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| 5 | 1 | rcp-NDBIER0 241 | . . . 4 ⊢ (𝜓 → 𝜑) |
| 6 | 5 | ax-GEN 15 | . . 3 ⊢ ∀𝑥(𝜓 → 𝜑) |
| 7 | 6 | alloverim-P5.RC 589 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥𝜑) |
| 8 | 4, 7 | rcp-NDBII0 239 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: exnegall-P5 598 alloverimex-P5 601 lemma-L5.03a 666 example-E5.04a 675 genallw-P6 676 genexw-P6 677 gennallw-P6 678 gennexw-P6 679 nfrleq-P6 687 nfrneg-P6 688 solvesub-P6a 704 solvedsub-P6a 711 lemma-L6.02a 726 lemma-L6.03a 728 genex-P6 731 gennex-P6 738 lemma-L6.08a 773 psubleq-P6 783 psubnfr-P6 784 psubneg-P6 788 psuball2v-P6 796 psubex2v-P6 797 |
| Copyright terms: Public domain | W3C validator |