PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverim-P5.RC

Theorem alloverim-P5.RC 589
Description: Inference Form of alloverim-P5 588.
Hypothesis
Ref Expression
alloverim-P5.RC.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
alloverim-P5.RC (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem alloverim-P5.RC
StepHypRef Expression
1 alloverim-P5.RC.1 . . . 4 𝑥(𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → ∀𝑥(𝜑𝜓))
32alloverim-P5 588 . 2 (⊤ → (∀𝑥𝜑 → ∀𝑥𝜓))
43ndtruee-P3.18 183 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  alloverim-P5.RC.GEN  592  suballinf-P5  594
  Copyright terms: Public domain W3C validator