| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > alloverim-P5 | |||
| Description: '∀𝑥' Distributes Over
'→'.
This is the deductive form of ax-L4 16. |
| Ref | Expression |
|---|---|
| alloverim-P5.1 | ⊢ (𝛾 → ∀𝑥(𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| alloverim-P5 | ⊢ (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alloverim-P5.1 | . 2 ⊢ (𝛾 → ∀𝑥(𝜑 → 𝜓)) | |
| 2 | ax-L4 16 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 3 | 2 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝛾 → (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))) |
| 4 | 1, 3 | ndime-P3.6 171 | 1 ⊢ (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: alloverim-P5.RC 589 dalloverim-P5 590 alloverimex-P5 601 dalloverimex-P5 605 alloverim-P5.GENV 621 alloverim-P5.GENF 747 |
| Copyright terms: Public domain | W3C validator |