PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverim-P5

Theorem alloverim-P5 588
Description: '𝑥' Distributes Over ''.

This is the deductive form of ax-L4 16.

Hypothesis
Ref Expression
alloverim-P5.1 (𝛾 → ∀𝑥(𝜑𝜓))
Assertion
Ref Expression
alloverim-P5 (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alloverim-P5
StepHypRef Expression
1 alloverim-P5.1 . 2 (𝛾 → ∀𝑥(𝜑𝜓))
2 ax-L4 16 . . 3 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
32rcp-NDIMP0addall 207 . 2 (𝛾 → (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)))
41, 3ndime-P3.6 171 1 (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  alloverim-P5.RC  589  dalloverim-P5  590  alloverimex-P5  601  dalloverimex-P5  605  alloverim-P5.GENV  621  alloverim-P5.GENF  747
  Copyright terms: Public domain W3C validator