PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverim-P5.GENV

Theorem alloverim-P5.GENV 621
Description: alloverim-P5 588 with Generalization (variable restriction). The most general form is alloverim-P5.GENF 747.
Hypothesis
Ref Expression
alloverim-P5.GENV.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
alloverim-P5.GENV (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
Distinct variable group:   𝛾,𝑥

Proof of Theorem alloverim-P5.GENV
StepHypRef Expression
1 alloverim-P5.GENV.1 . . 3 (𝛾 → (𝜑𝜓))
21allicv-P5 614 . 2 (𝛾 → ∀𝑥(𝜑𝜓))
32alloverim-P5 588 1 (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  suballv-P5  623
  Copyright terms: Public domain W3C validator