PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  allicv-P5

Theorem allicv-P5 614
Description: Introduction of Universal Quantifier as Consequent. (variable restriction).

'𝑥' may occur in '𝜓' but not '𝜑'.

This is a weak version of the '' intruduction rule in the natural deduction system. The version with a non-freeness condition is allic-P6 745.

Hypothesis
Ref Expression
allicv-P5.1 (𝜑𝜓)
Assertion
Ref Expression
allicv-P5 (𝜑 → ∀𝑥𝜓)
Distinct variable group:   𝜑,𝑥

Proof of Theorem allicv-P5
StepHypRef Expression
1 ax-L5 17 . 2 (𝜑 → ∀𝑥𝜑)
2 allicv-P5.1 . . 3 (𝜑𝜓)
32alloverim-P5.RC.GEN 592 . 2 (∀𝑥𝜑 → ∀𝑥𝜓)
41, 3syl-P3.24.RC 260 1 (𝜑 → ∀𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  alloverim-P5.GENV  621  alloverimex-P5.GENV  622  specpsub-P6  721
  Copyright terms: Public domain W3C validator