PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverim-P5.RC.GEN

Theorem alloverim-P5.RC.GEN 592
Description: Inference Form of alloverim-P5 588 with Generalization.

For the deductive form with a variable restriction see alloverim-P5.GENV 621. For the most general form, see alloverim-P5.GENF 747.

Hypothesis
Ref Expression
alloverim-P5.RC.GEN.1 (𝜑𝜓)
Assertion
Ref Expression
alloverim-P5.RC.GEN (∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem alloverim-P5.RC.GEN
StepHypRef Expression
1 alloverim-P5.RC.GEN.1 . . 3 (𝜑𝜓)
21ax-GEN 15 . 2 𝑥(𝜑𝜓)
32alloverim-P5.RC 589 1 (∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  qimeqallhalf-P5  609  allicv-P5  614  cbvallv-P5-L1  658  lemma-L5.04a  667  nfrall2w-P6  694  specpsub-P6  721  nfrall2-P6  743  allic-P6  745  exgennfrcl-L6  814
  Copyright terms: Public domain W3C validator