| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > alloverim-P5.RC.GEN | |||
| Description: Inference Form of alloverim-P5 588 with Generalization.
For the deductive form with a variable restriction see alloverim-P5.GENV 621. For the most general form, see alloverim-P5.GENF 747. |
| Ref | Expression |
|---|---|
| alloverim-P5.RC.GEN.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alloverim-P5.RC.GEN | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alloverim-P5.RC.GEN.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ax-GEN 15 | . 2 ⊢ ∀𝑥(𝜑 → 𝜓) |
| 3 | 2 | alloverim-P5.RC 589 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: qimeqallhalf-P5 609 allicv-P5 614 cbvallv-P5-L1 658 lemma-L5.04a 667 nfrall2w-P6 694 specpsub-P6 721 nfrall2-P6 743 allic-P6 745 exgennfrcl-L6 814 |
| Copyright terms: Public domain | W3C validator |