PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L5.04a

Theorem lemma-L5.04a 667
Description: A lemma for commuting universal quantifiers.

Requires the existence of '𝜑₁(𝑦₁)' as a replacement for '𝜑(𝑦)'.

Hypothesis
Ref Expression
lemma-L5.04a.1 (𝑦 = 𝑦₁ → (𝜑𝜑₁))
Assertion
Ref Expression
lemma-L5.04a (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Distinct variable groups:   𝜑,𝑦₁   𝜑₁,𝑦   𝑥,𝑦,𝑦₁

Proof of Theorem lemma-L5.04a
StepHypRef Expression
1 lemma-L5.04a.1 . . . . 5 (𝑦 = 𝑦₁ → (𝜑𝜑₁))
21cbvallv-P5 659 . . . 4 (∀𝑦𝜑 ↔ ∀𝑦₁𝜑₁)
32rcp-NDBIEF0 240 . . 3 (∀𝑦𝜑 → ∀𝑦₁𝜑₁)
43alloverim-P5.RC.GEN 592 . 2 (∀𝑥𝑦𝜑 → ∀𝑥𝑦₁𝜑₁)
5 ax-L5 17 . 2 (∀𝑥𝑦₁𝜑₁ → ∀𝑦𝑥𝑦₁𝜑₁)
61bisym-P3.33b 298 . . . . . 6 (𝑦 = 𝑦₁ → (𝜑₁𝜑))
7 eqsym-P5.CL.SYM 629 . . . . . 6 (𝑦 = 𝑦₁𝑦₁ = 𝑦)
86, 7subiml2-P4.RC 541 . . . . 5 (𝑦₁ = 𝑦 → (𝜑₁𝜑))
98specisub-P5 654 . . . 4 (∀𝑦₁𝜑₁𝜑)
109alloverim-P5.RC.GEN 592 . . 3 (∀𝑥𝑦₁𝜑₁ → ∀𝑥𝜑)
1110alloverim-P5.RC.GEN 592 . 2 (∀𝑦𝑥𝑦₁𝜑₁ → ∀𝑦𝑥𝜑)
124, 5, 11dsyl-P3.25.RC 262 1 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  lemma-L5.05a  668  allcommw-P5  669  nfrall2w-P6  694
  Copyright terms: Public domain W3C validator