| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L5.04a | |||
| Description: A lemma for commuting
universal quantifiers.
Requires the existence of '𝜑₁(𝑦₁)' as a replacement for '𝜑(𝑦)'. |
| Ref | Expression |
|---|---|
| lemma-L5.04a.1 | ⊢ (𝑦 = 𝑦₁ → (𝜑 ↔ 𝜑₁)) |
| Ref | Expression |
|---|---|
| lemma-L5.04a | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L5.04a.1 | . . . . 5 ⊢ (𝑦 = 𝑦₁ → (𝜑 ↔ 𝜑₁)) | |
| 2 | 1 | cbvallv-P5 659 | . . . 4 ⊢ (∀𝑦𝜑 ↔ ∀𝑦₁𝜑₁) |
| 3 | 2 | rcp-NDBIEF0 240 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑦₁𝜑₁) |
| 4 | 3 | alloverim-P5.RC.GEN 592 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦₁𝜑₁) |
| 5 | ax-L5 17 | . 2 ⊢ (∀𝑥∀𝑦₁𝜑₁ → ∀𝑦∀𝑥∀𝑦₁𝜑₁) | |
| 6 | 1 | bisym-P3.33b 298 | . . . . . 6 ⊢ (𝑦 = 𝑦₁ → (𝜑₁ ↔ 𝜑)) |
| 7 | eqsym-P5.CL.SYM 629 | . . . . . 6 ⊢ (𝑦 = 𝑦₁ ↔ 𝑦₁ = 𝑦) | |
| 8 | 6, 7 | subiml2-P4.RC 541 | . . . . 5 ⊢ (𝑦₁ = 𝑦 → (𝜑₁ ↔ 𝜑)) |
| 9 | 8 | specisub-P5 654 | . . . 4 ⊢ (∀𝑦₁𝜑₁ → 𝜑) |
| 10 | 9 | alloverim-P5.RC.GEN 592 | . . 3 ⊢ (∀𝑥∀𝑦₁𝜑₁ → ∀𝑥𝜑) |
| 11 | 10 | alloverim-P5.RC.GEN 592 | . 2 ⊢ (∀𝑦∀𝑥∀𝑦₁𝜑₁ → ∀𝑦∀𝑥𝜑) |
| 12 | 4, 5, 11 | dsyl-P3.25.RC 262 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: lemma-L5.05a 668 allcommw-P5 669 nfrall2w-P6 694 |
| Copyright terms: Public domain | W3C validator |