PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrall2w-P6

Theorem nfrall2w-P6 694
Description: ENF Over Universal Quantifier (different variable - weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

Hypotheses
Ref Expression
nfrall2w-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
nfrall2w-P6.2 𝑥𝜑
Assertion
Ref Expression
nfrall2w-P6 𝑥𝑦𝜑
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑦,𝑥₁

Proof of Theorem nfrall2w-P6
StepHypRef Expression
1 nfrall2w-P6.1 . . 3 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21suballv-P5 623 . 2 (𝑥 = 𝑥₁ → (∀𝑦𝜑 ↔ ∀𝑦𝜑₁))
3 nfrall2w-P6.2 . . . . 5 𝑥𝜑
41, 3nfrgenw-P6 684 . . . 4 (𝜑 → ∀𝑥𝜑)
54alloverim-P5.RC.GEN 592 . . 3 (∀𝑦𝜑 → ∀𝑦𝑥𝜑)
61lemma-L5.04a 667 . . 3 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
75, 6syl-P3.24.RC 260 . 2 (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
82, 7gennfrw-P6 685 1 𝑥𝑦𝜑
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator