| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > gennfrw-P6 | |||
| Description: General for ⇒ ENF in (weakened form).
Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'. If '𝜑' is general for '𝑥', then '𝑥' is effectively not free in '𝜑'. |
| Ref | Expression |
|---|---|
| gennfrw-P6.1 | ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) |
| gennfrw-P6.2 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| gennfrw-P6 | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gennfrw-P6.2 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | alloverimex-P5.RC.GEN 603 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥∀𝑥𝜑) |
| 3 | gennfrw-P6.1 | . . . 4 ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) | |
| 4 | 3 | exgenallw-P6 680 | . . 3 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
| 5 | 2, 4 | syl-P3.24.RC 260 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
| 6 | dfnfreealt-P6 683 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 7 | 5, 6 | bimpr-P4.RC 534 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrv-P6 686 nfrall1w-P6 692 nfrex1w-P6 693 nfrall2w-P6 694 nfrex2w-P6 695 exgennfrw-P6 697 |
| Copyright terms: Public domain | W3C validator |