PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  gennfrw-P6

Theorem gennfrw-P6 685
Description: General for ENF in (weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

If '𝜑' is general for '𝑥', then '𝑥' is effectively not free in '𝜑'.

Hypotheses
Ref Expression
gennfrw-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
gennfrw-P6.2 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
gennfrw-P6 𝑥𝜑
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem gennfrw-P6
StepHypRef Expression
1 gennfrw-P6.2 . . . 4 (𝜑 → ∀𝑥𝜑)
21alloverimex-P5.RC.GEN 603 . . 3 (∃𝑥𝜑 → ∃𝑥𝑥𝜑)
3 gennfrw-P6.1 . . . 4 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
43exgenallw-P6 680 . . 3 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
52, 4syl-P3.24.RC 260 . 2 (∃𝑥𝜑 → ∀𝑥𝜑)
6 dfnfreealt-P6 683 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
75, 6bimpr-P4.RC 534 1 𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrv-P6  686  nfrall1w-P6  692  nfrex1w-P6  693  nfrall2w-P6  694  nfrex2w-P6  695  exgennfrw-P6  697
  Copyright terms: Public domain W3C validator