PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exgenallw-P6

Theorem exgenallw-P6 680
Description: Dual of gennallw-P6 678 (weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

Hypothesis
Ref Expression
exgenallw-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
Assertion
Ref Expression
exgenallw-P6 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem exgenallw-P6
StepHypRef Expression
1 exgenallw-P6.1 . . 3 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21gennallw-P6 678 . 2 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
3 lemma-L5.01a 600 . 2 ((∃𝑥𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑))
42, 3bimpr-P4.RC 534 1 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  gennfrw-P6  685
  Copyright terms: Public domain W3C validator