PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrgenw-P6

Theorem nfrgenw-P6 684
Description: ENF in General for (weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

If '𝑥' is effectively not free in '𝜑', then '𝜑' is general for '𝑥'.

Hypotheses
Ref Expression
nfrgenw-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
nfrgenw-P6.2 𝑥𝜑
Assertion
Ref Expression
nfrgenw-P6 (𝜑 → ∀𝑥𝜑)
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem nfrgenw-P6
StepHypRef Expression
1 nfrgenw-P6.1 . . 3 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21exiw-P5 662 . 2 (𝜑 → ∃𝑥𝜑)
3 nfrgenw-P6.2 . . 3 𝑥𝜑
4 dfnfreealt-P6 683 . . 3 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
53, 4bimpf-P4.RC 532 . 2 (∃𝑥𝜑 → ∀𝑥𝜑)
62, 5syl-P3.24.RC 260 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrall2w-P6  694  nfrex2w-P6  695  nfrexgenw-P6  696  qremallw-P6  702
  Copyright terms: Public domain W3C validator