| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrgenw-P6 | |||
| Description: ENF in ⇒ General for (weakened form).
Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'. If '𝑥' is effectively not free in '𝜑', then '𝜑' is general for '𝑥'. |
| Ref | Expression |
|---|---|
| nfrgenw-P6.1 | ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) |
| nfrgenw-P6.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrgenw-P6 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrgenw-P6.1 | . . 3 ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) | |
| 2 | 1 | exiw-P5 662 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) |
| 3 | nfrgenw-P6.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | dfnfreealt-P6 683 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 5 | 3, 4 | bimpf-P4.RC 532 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
| 6 | 2, 5 | syl-P3.24.RC 260 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrall2w-P6 694 nfrex2w-P6 695 nfrexgenw-P6 696 qremallw-P6 702 |
| Copyright terms: Public domain | W3C validator |