PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exiw-P5

Theorem exiw-P5 662
Description: Weak Version of Existential Quantifier Introduction Law.

This is the dual form of specw-P5 661.

Note that the hypothesis only requires the existence of a dummy variable '𝑥₁' and dummy formula '𝜑₁', that is equivalent to '𝜑' with free occurences of '𝑥' replaced with '𝑥₁' and bound occurances of '𝑥' replaced with fresh variables.

We will need the auxiliary "scheme completeness" axiom ax-L12 29 to eliminate the hypothesis in the general case (see exi-P6 718).

Hypothesis
Ref Expression
exiw-P5.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
Assertion
Ref Expression
exiw-P5 (𝜑 → ∃𝑥𝜑)
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem exiw-P5
StepHypRef Expression
1 exiw-P5.1 . . . . 5 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21subneg-P3.39 323 . . . 4 (𝑥 = 𝑥₁ → (¬ 𝜑 ↔ ¬ 𝜑₁))
32specw-P5 661 . . 3 (∀𝑥 ¬ 𝜑 → ¬ 𝜑)
43trnsp-P3.31a.RC 280 . 2 (𝜑 → ¬ ∀𝑥 ¬ 𝜑)
5 df-exists-D5.1 596 . . 3 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
65bisym-P3.33b.RC 299 . 2 (¬ ∀𝑥 ¬ 𝜑 ↔ ∃𝑥𝜑)
74, 6subimr2-P4.RC 543 1 (𝜑 → ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  nfrgenw-P6  684  qremexw-P6  703
  Copyright terms: Public domain W3C validator