PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E5.01a

Theorem example-E5.01a 663
Description: Hypothesis Elimination Example 1.
Assertion
Ref Expression
example-E5.01a (𝑥 = 𝑥₁ → ((𝑡 ⋅ (𝑢 + 𝑥)) = ((𝑡𝑢) + (𝑡𝑥)) ↔ (𝑡 ⋅ (𝑢 + 𝑥₁)) = ((𝑡𝑢) + (𝑡𝑥₁))))
Distinct variable group:   𝑥,𝑥₁

Proof of Theorem example-E5.01a
StepHypRef Expression
1 rcp-NDASM1of1 192 . . . 4 (𝑥 = 𝑥₁𝑥 = 𝑥₁)
21subaddr-P5 646 . . 3 (𝑥 = 𝑥₁ → (𝑢 + 𝑥) = (𝑢 + 𝑥₁))
32submultr-P5 650 . 2 (𝑥 = 𝑥₁ → (𝑡 ⋅ (𝑢 + 𝑥)) = (𝑡 ⋅ (𝑢 + 𝑥₁)))
41submultr-P5 650 . . 3 (𝑥 = 𝑥₁ → (𝑡𝑥) = (𝑡𝑥₁))
54subaddr-P5 646 . 2 (𝑥 = 𝑥₁ → ((𝑡𝑢) + (𝑡𝑥)) = ((𝑡𝑢) + (𝑡𝑥₁)))
63, 5subeqd-P5 637 1 (𝑥 = 𝑥₁ → ((𝑡 ⋅ (𝑢 + 𝑥)) = ((𝑡𝑢) + (𝑡𝑥)) ↔ (𝑡 ⋅ (𝑢 + 𝑥₁)) = ((𝑡𝑢) + (𝑡𝑥₁))))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   + term-add 4  term-mult 5   = wff-equals 6  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-addr 24  ax-L9-multr 26
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator