PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  specw-P5

Theorem specw-P5 661
Description: Weak Version of Law of Specialization.

Note that the hypothesis only requires the existence of a dummy variable '𝑥₁' and dummy formula '𝜑₁', that is equivalent to '𝜑' with free occurences of '𝑥' replaced with '𝑥₁' and bound occurances of '𝑥' replaced with fresh variables. Using induction on formula length, one can prove a meta-theorem stating that such a formula always exists. The building blocks of the inductive proof are the substitution theorems (theorems beginning with "sub") and the two bound variable replacement theorems (cbvallv-P5 659 and cbvexv-P5 660).

Because meta-theorems don't exist in metamath, we will need the auxiliary "scheme completeness" axiom ax-L12 29 to eliminate the hypothesis in the general case (see spec-P6 719).

Hypothesis
Ref Expression
specw-P5.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
Assertion
Ref Expression
specw-P5 (∀𝑥𝜑𝜑)
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem specw-P5
StepHypRef Expression
1 specw-P5.1 . . . 4 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21cbvallv-P5 659 . . 3 (∀𝑥𝜑 ↔ ∀𝑥₁𝜑₁)
32rcp-NDBIEF0 240 . 2 (∀𝑥𝜑 → ∀𝑥₁𝜑₁)
41ndbier-P3.15 180 . . . 4 (𝑥 = 𝑥₁ → (𝜑₁𝜑))
5 eqsym-P5.CL.SYM 629 . . . 4 (𝑥 = 𝑥₁𝑥₁ = 𝑥)
64, 5subiml2-P4.RC 541 . . 3 (𝑥₁ = 𝑥 → (𝜑₁𝜑))
76lemma-L5.02a 653 . 2 (∀𝑥₁𝜑₁𝜑)
83, 7syl-P3.24.RC 260 1 (∀𝑥𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  exiw-P5  662  qremallw-P6  702
  Copyright terms: Public domain W3C validator