PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cbvexv-P5

Theorem cbvexv-P5 660
Description: Change of Bound Variable Law for '𝑥' (variable restriction).

'𝑥' cannot occur in '𝜓' and '𝑦' cannot occur in '𝜑'.

The hypothesis is fulfilled when every free occurrence of '𝑥' in '𝜑' is replaced with '𝑦', and every bound occurance of '𝑥' is replaced with a fresh variable (one for each quantifier). The resulting WFF is '𝜓'.

The most general form is cbvex-P6 752.

Hypothesis
Ref Expression
cbvexv-P5.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv-P5 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦

Proof of Theorem cbvexv-P5
StepHypRef Expression
1 df-exists-D5.1 596 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
2 cbvexv-P5.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
32subneg-P3.39 323 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
43cbvallv-P5 659 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
54subneg-P3.39.RC 324 . 2 (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓)
6 df-exists-D5.1 596 . . 3 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
76bisym-P3.33b.RC 299 . 2 (¬ ∀𝑦 ¬ 𝜓 ↔ ∃𝑦𝜓)
81, 5, 7dbitrns-P4.16.RC 429 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  genexw-P6  677  nfrex1w-P6  693  example-E6.02a  712
  Copyright terms: Public domain W3C validator