| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > cbvex-P6 | |||
| Description: Change of Bound Variable Law for '∃𝑥' (non-freeness condition). |
| Ref | Expression |
|---|---|
| cbvex-P6.1 | ⊢ Ⅎ𝑥𝜓 |
| cbvex-P6.2 | ⊢ Ⅎ𝑦𝜑 |
| cbvex-P6.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvex-P6 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-exists-D5.1 596 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | cbvex-P6.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 3 | nfrneg-P6 688 | . . . . 5 ⊢ (Ⅎ𝑥 ¬ 𝜓 ↔ Ⅎ𝑥𝜓) | |
| 4 | 2, 3 | bimpr-P4.RC 534 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 5 | cbvex-P6.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 6 | nfrneg-P6 688 | . . . . 5 ⊢ (Ⅎ𝑦 ¬ 𝜑 ↔ Ⅎ𝑦𝜑) | |
| 7 | 5, 6 | bimpr-P4.RC 534 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 8 | cbvex-P6.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 9 | 8 | subneg-P3.39 323 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 10 | 4, 7, 9 | cbvall-P6 751 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 11 | 10 | subneg-P3.39.RC 324 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
| 12 | df-exists-D5.1 596 | . . 3 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
| 13 | 12 | bisym-P3.33b.RC 299 | . 2 ⊢ (¬ ∀𝑦 ¬ 𝜓 ↔ ∃𝑦𝜓) |
| 14 | 1, 11, 13 | dbitrns-P4.16.RC 429 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: cbvexpsub-P6 769 |
| Copyright terms: Public domain | W3C validator |