PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cbvex-P6

Theorem cbvex-P6 752
Description: Change of Bound Variable Law for '𝑥' (non-freeness condition).
Hypotheses
Ref Expression
cbvex-P6.1 𝑥𝜓
cbvex-P6.2 𝑦𝜑
cbvex-P6.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvex-P6 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦

Proof of Theorem cbvex-P6
StepHypRef Expression
1 df-exists-D5.1 596 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
2 cbvex-P6.1 . . . . 5 𝑥𝜓
3 nfrneg-P6 688 . . . . 5 (Ⅎ𝑥 ¬ 𝜓 ↔ Ⅎ𝑥𝜓)
42, 3bimpr-P4.RC 534 . . . 4 𝑥 ¬ 𝜓
5 cbvex-P6.2 . . . . 5 𝑦𝜑
6 nfrneg-P6 688 . . . . 5 (Ⅎ𝑦 ¬ 𝜑 ↔ Ⅎ𝑦𝜑)
75, 6bimpr-P4.RC 534 . . . 4 𝑦 ¬ 𝜑
8 cbvex-P6.3 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
98subneg-P3.39 323 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
104, 7, 9cbvall-P6 751 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
1110subneg-P3.39.RC 324 . 2 (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓)
12 df-exists-D5.1 596 . . 3 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
1312bisym-P3.33b.RC 299 . 2 (¬ ∀𝑦 ¬ 𝜓 ↔ ∃𝑦𝜓)
141, 11, 13dbitrns-P4.16.RC 429 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  cbvexpsub-P6  769
  Copyright terms: Public domain W3C validator