| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > suball-P6 | |||
| Description: Substitution Law for '∀𝑥' (non-freeness condition). |
| Ref | Expression |
|---|---|
| suball-P6.1 | ⊢ Ⅎ𝑥𝛾 |
| suball-P6.2 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| suball-P6 | ⊢ (𝛾 → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suball-P6.1 | . . 3 ⊢ Ⅎ𝑥𝛾 | |
| 2 | suball-P6.2 | . . . 4 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ndbief-P3.14 179 | . . 3 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| 4 | 1, 3 | alloverim-P5.GENF 747 | . 2 ⊢ (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| 5 | 2 | ndbier-P3.15 180 | . . 3 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| 6 | 1, 5 | alloverim-P5.GENF 747 | . 2 ⊢ (𝛾 → (∀𝑥𝜓 → ∀𝑥𝜑)) |
| 7 | 4, 6 | ndbii-P3.13 178 | 1 ⊢ (𝛾 → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: subnfr-P6 755 |
| Copyright terms: Public domain | W3C validator |