| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndbier-P3.15 | |||
| Description: Natural Deduction: '↔' Elimination Rule - Reverse Implication.
After deducing a biconditional statement, we can deduce the associated reverse implication. |
| Ref | Expression |
|---|---|
| ndbier-P3.15.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ndbier-P3.15 | ⊢ (𝛾 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndbier-P3.15.1 | . 2 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | birev-P2.5b.AC.SH 117 | 1 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: rcp-NDBIER0 241 ndbier-P3.15.CL 250 bisym-P3.33b 298 bitrns-P3.33c 302 subneg-P3.39 323 subiml-P3.40a 325 subimr-P3.40b 327 subimd-P3.40c 329 bimpr-P4 533 suballv-P5 623 subexv-P5 624 cbvallv-P5 659 specw-P5 661 cbvall-P6 751 suball-P6 753 subex-P6 754 lemma-L6.07a-L2 771 splitelof-P6-L1 777 lemma-L7.02a-L1 943 nfrgencl-P7 965 suball-P7 973 dfpsubv-P7 977 subex-P7 1042 |
| Copyright terms: Public domain | W3C validator |