PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndbier-P3.15

Theorem ndbier-P3.15 180
Description: Natural Deduction: '' Elimination Rule - Reverse Implication.

After deducing a biconditional statement, we can deduce the associated reverse implication.

Hypothesis
Ref Expression
ndbier-P3.15.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
ndbier-P3.15 (𝛾 → (𝜓𝜑))

Proof of Theorem ndbier-P3.15
StepHypRef Expression
1 ndbier-P3.15.1 . 2 (𝛾 → (𝜑𝜓))
21birev-P2.5b.AC.SH 117 1 (𝛾 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  rcp-NDBIER0  241  ndbier-P3.15.CL  250  bisym-P3.33b  298  bitrns-P3.33c  302  subneg-P3.39  323  subiml-P3.40a  325  subimr-P3.40b  327  subimd-P3.40c  329  bimpr-P4  533  suballv-P5  623  subexv-P5  624  cbvallv-P5  659  specw-P5  661  cbvall-P6  751  suball-P6  753  subex-P6  754  lemma-L6.07a-L2  771  splitelof-P6-L1  777  lemma-L7.02a-L1  943  nfrgencl-P7  965  suball-P7  973  dfpsubv-P7  977  subex-P7  1042
  Copyright terms: Public domain W3C validator