| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrgencl-P7 | |||
| Description: ENF In ⇒ General For (closed form). † |
| Ref | Expression |
|---|---|
| nfrgencl-P7 | ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrnfr-P7.12 837 | . . . . . 6 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 | |
| 2 | rcp-NDASM1of1 192 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
| 3 | 1, 2 | lemma-L7.03 962 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
| 4 | 3 | ndbier-P3.15 180 | . . . 4 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → [𝑦 / 𝑥]𝜑)) |
| 5 | 4 | import-P3.34a.RC 306 | . . 3 ⊢ ((Ⅎ𝑥𝜑 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) |
| 6 | 5 | ndalli-P7.17.VR12of2 866 | . 2 ⊢ ((Ⅎ𝑥𝜑 ∧ 𝜑) → ∀𝑥𝜑) |
| 7 | 6 | rcp-NDIMI2 224 | 1 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 ∀wff-forall 8 → wff-imp 10 ∧ wff-and 132 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: dfnfreealtonlyif-P7 966 |
| Copyright terms: Public domain | W3C validator |