PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrgencl-P7

Theorem nfrgencl-P7 965
Description: ENF In General For (closed form).
Assertion
Ref Expression
nfrgencl-P7 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))

Proof of Theorem nfrgencl-P7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ndnfrnfr-P7.12 837 . . . . . 6 𝑥𝑥𝜑
2 rcp-NDASM1of1 192 . . . . . 6 (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑)
31, 2lemma-L7.03 962 . . . . 5 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
43ndbier-P3.15 180 . . . 4 (Ⅎ𝑥𝜑 → (𝜑 → [𝑦 / 𝑥]𝜑))
54import-P3.34a.RC 306 . . 3 ((Ⅎ𝑥𝜑𝜑) → [𝑦 / 𝑥]𝜑)
65ndalli-P7.17.VR12of2 866 . 2 ((Ⅎ𝑥𝜑𝜑) → ∀𝑥𝜑)
76rcp-NDIMI2 224 1 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-forall 8  wff-imp 10  wff-and 132  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  dfnfreealtonlyif-P7  966
  Copyright terms: Public domain W3C validator