| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dfnfreealtif-P7 | |||
| Description: Necessary Condition for (i.e. "If" part of) Alternate ENF Definition. † |
| Ref | Expression |
|---|---|
| dfnfreealtif-P7 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrex1-P7.8 833 | . . . 4 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
| 2 | ndnfrall1-P7.7 832 | . . . 4 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 3 | 1, 2 | ndnfrim-P7.3.RC 876 | . . 3 ⊢ Ⅎ𝑥(∃𝑥𝜑 → ∀𝑥𝜑) |
| 4 | exi-P7.CL 952 | . . . 4 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 5 | 4 | imsubl-P3.28a.RC 268 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑)) |
| 6 | 3, 5 | alli-P7 947 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 7 | gennfrcl-P7 963 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
| 8 | 6, 7 | syl-P3.24.RC 260 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: dfnfreealt-P7 967 dfnfreeint-P7 969 nfrnegconv-P8 1110 |
| Copyright terms: Public domain | W3C validator |