PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfnfreealtif-P7

Theorem dfnfreealtif-P7 964
Description: Necessary Condition for (i.e. "If" part of) Alternate ENF Definition.
Assertion
Ref Expression
dfnfreealtif-P7 ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)

Proof of Theorem dfnfreealtif-P7
StepHypRef Expression
1 ndnfrex1-P7.8 833 . . . 4 𝑥𝑥𝜑
2 ndnfrall1-P7.7 832 . . . 4 𝑥𝑥𝜑
31, 2ndnfrim-P7.3.RC 876 . . 3 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
4 exi-P7.CL 952 . . . 4 (𝜑 → ∃𝑥𝜑)
54imsubl-P3.28a.RC 268 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑))
63, 5alli-P7 947 . 2 ((∃𝑥𝜑 → ∀𝑥𝜑) → ∀𝑥(𝜑 → ∀𝑥𝜑))
7 gennfrcl-P7 963 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
86, 7syl-P3.24.RC 260 1 ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  dfnfreealt-P7  967  dfnfreeint-P7  969  nfrnegconv-P8  1110
  Copyright terms: Public domain W3C validator